(12)

US009170921B2

United States Patent
N’Gum et al.

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

APPLICATION TESTING AUTOMATION

Applicant: Bank of America Corporation,
Charlotte, NC (US)

Inventors: Bamba N’Gum, Charlotte, NC (US);
Mona Shah, Charlotte, NC (US);
Prashant Pandey, Andhra Pradesh (IN);
Sudha Kiran Chakalakonda, Andhra
Pradesh (IN); Seshadri N. Sundaram,
Hitec (IN)

Assignee: Bank of America Corporation,
Charlotte, NC (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 154 days.

Appl. No.: 14/163,245

Filed: Jan. 24, 2014

Prior Publication Data

US 2015/0212927 Al Jul. 30, 2015

Int. CL.

GO6F 9/45 (2006.01)

GO6F 1136 (2006.01)

U.S. CL

CPC i GO6F 11/3664 (2013.01)

Field of Classification Search

None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,587,969 B1* 7/2003 Weinbergetal. ............... 714/46
6,898,764 B2* 5/2005 Kemp .............. .. 715/762
8,489,930 B1* 7/2013 Sim-Tang .... .. 714/38.1
8,881,109 B1* 11/2014 Bridgesetal. ... . T17/125
9,038,029 B2* 5/2015 Chaturvedi et al. ........... 717/124
2003/0236775 Al* 12/2003 Patterson .............c.ccc..... 707/3
2006/0168565 Al* 7/2006 Gammaetal. ................ 717/122

|10

REMOTE
APPLICATION
D\ 122

10" TEST DEVICE

(10) Patent No.: US 9,170,921 B2

(45) Date of Patent: Oct. 27,2015
2007/0033443 Al* 2/2007 Tillmann etal. ................ 714/45
2008/0256517 Al* 10/2008 Atkinetal. ......cccccouen. 717/124
2008/0276225 Al* 11/2008 Saterdagetal. .............. 717/127
2008/0320462 Al* 12/2008 Bergmanetal. ............. 717/168
2009/0210749 Al* 82009 Hayutin ......... ... 714/38
2009/0217303 Al* 8/2009 Grechanik et al. ............ 719/320
2009/0307650 Al* 12/2009 Sarafetal. .......ccccceven. 717/101
2011/0016453 Al* 1/2011 Grechanik et al. ............ 717/125
2011/0090219 Al* 4/2011 Kruglick .....ccccoevernnene 345/420
2011/0283267 Al* 11/2011 Waiteetal. ......cooueenenn. 717/135
2011/0321013 Al* 12/2011 Raunstien .................... 717/125
2012/0159443 Al* 6/2012 Kamenzetal. ............... 717/124
2012/0173998 Al* 7/2012 Chaturvedi et al. ........... 715/762
2014/0108589 Al* 4/2014 Dhanda ........ccoocvvvennne 709/217
2014/0165043 Al* 6/2014 Pasalaetal. ................ 717/124
2015/0082280 Al* 3/2015 Betaketal. ......cccccun. 717/124

OTHER PUBLICATIONS

Mercury Interactive Corporation, “QuickTest Professional User’s
Guide, Version 6.5”, © 2003 Mercury Interactive Corporation,
QTPUG6.5/01, www.mercuryinteractive.com.

Hewlett-Packard Development Company, L.P., “HP QuickTest Pro-
fessional software, Data sheet”, © 2007 Hewlett-Packard Develop-
ment Company, L.P., 4AA1-2116ENW Rev. 1, www.hp.com/soft-
ware, Oct. 2008.

* cited by examiner

Primary Examiner — Isaac T Tecklu
(74) Attorney, Agent, or Firm — Michael A. Springs

(57) ABSTRACT

According to one embodiment of the present invention, a test
for an application is created. An application is identified with
functionality applied through a graphical user interface. A
determination is made of expected characteristics of an appli-
cation object that will be included in a version of the appli-
cation once the version of the application becomes available
for testing through the graphical user interface. A virtual
object is created according to the expected characteristics of
the application object. A step associated with the virtual
object is incorporated into a test case to be used on the version
of'the application. The test case that includes the virtual object
is executed on the version of the application when the version
of the application becomes available for testing through the
graphical user interface.

20 Claims, 3 Drawing Sheets

i
N
TEST REPOSITORY
%
108
S
DATA REPOSITORY
%
124
g PROCESSOR %8
128
130~ ]
« TEST 132
N mobuze | L H
114
. LOCAL 124
. |Tieepucaron] L1




US 9,170,921 B2

Sheet 1 of 3

Oct. 27, 2015

U.S. Patent

70IN30 1531

TN

194

N—0e1

s Y N
B NOLLYIllddY
pel—1"] o017 N
] 7INaow | |
2el—"] 1891 A
821"
92117 H0SSII04Hd
T T
miﬂ_ Qiﬂ_
AH01ISOd3H Vivd
T
%\\\
T T T
m?@ m@@
AHOLISOd3Y 1531
e
%l\\

gl —~

NOILYIITddVY

F10M34 oct

H0S53904d

HINgIs 8L
NOILYOTddY

201"




U.S. Patent Oct. 27, 2015 Sheet 2 of 3 US 9,170,921 B2

C START ) 200
Y f202
IDENTIFY
APPLICATION
206 ! 204
.| CREATE |YES TEST CASE
TEST CASE 710 CREATE?

~210

EXECUTE
TEST CASE

GENERATE
AUTOMATION
SCRIPT

/’214

EXECUTE
AUTOMATION
SCRIPT

¥ /‘276

DETERMINE
FUNCTIONAL
COVERAGE

218
APPLICATION
CHANGES
EXPECTED?

YES

C END ) FIG. 2




U.S. Patent

Oct. 27, 2015

300 ™

304

RETRIEVE
TEST CASE

Sheet 3 of 3

BEGIN WITH
EXISTING
[EST CASE?

US 9,170,921 B2

DETERMINE
VIRTUAL OBJECT EXPLORE
PROPERTIES APPLICATION?
! 320
CREATE VIRTUAL 310
OBJECT RECORD STEP
7 322 ! 312
CAPTURE
INe OT’Z:’;%/XSEE’ NIO L, DYNAMIC OBJECT

324

MODIFY

MORE STEPS

10 RECORD?

314

EXISTING 330
7

QBJECT: CREATE REUSABLE
MODIFY EXISTING ! 332
OBJECT PROPERTIES MODIFY/CREATE

ADDITIONAL STEPS
! ~328 *

INCORPORATE INTO

TEST CASE C END )

FIG. 3



US 9,170,921 B2

1
APPLICATION TESTING AUTOMATION

TECHNICAL FIELD OF THE INVENTION

This invention relates, in general, to application testing
and, more particularly, to automation of application testing.

BACKGROUND OF THE INVENTION

A software developer may create software applications that
may incorporate any number of features and functionality
depending on the requirements of the application. Some of
these features may perform critical functions. Additionally,
requirements for certain software features may change or be
expanded at various times in a development schedule and/or
over the life of the software application. Furthermore, such
features may be needed under tight timing constraints.

SUMMARY OF THE INVENTION

In accordance with the present invention, disadvantages
and problems associated with application testing may be
reduced or eliminated.

According to one embodiment of the present invention, a
test for an application is created. An application is identified
with functionality applied through a graphical user interface.
A determination is made of expected characteristics of an
application object that will be included in a version of the
application once the version of the application becomes avail-
able for testing through the graphical user interface. A virtual
object is created according to the expected characteristics of
the application object. A step associated with the virtual
object is incorporated into a test case to be used on the version
of'the application. The test case that includes the virtual object
is executed on the version of the application when the version
of the application becomes available for testing through the
graphical user interface.

Certain embodiments of the invention may provide one or
more technical advantages. A technical advantage of an
embodiment allows a test case to be created for an application
with functionality applied through a graphical user without
having the application available. The test case and/or auto-
mation scripts based on the test case may be ready for execu-
tion as soon as the application becomes available for testing.
This may reduce the time allocated for testing of an applica-
tion and, accordingly, the overall time required to release an
application to general users. Another advantage of an
embodiment allows a user who may have a non-technical
background to create a test case and/or associated automation
scripts that cover multiple testing scenarios easily through a
graphical user interface. Such test cases and/or automation
scripts may not require the user to author any computer code.
Another technical advantage of an embodiment detects
actions associated with a test case, automatically documents
those test cases, and presents them on a user-friendly graphi-
cal user interface for relatively easy modification. Another
technical advantage of an embodiment accommodates
changes in underlying software applications without requir-
ing substantial changes in the testing environment.

Certain embodiments of the invention may include none,
some, or all of the above technical advantages. One or more
other technical advantages may be readily apparent to one
skilled in the art from the figures, descriptions, and claims
included herein.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and for further features and advantages thereof, reference

10

15

20

25

35

40

45

50

55

60

65

2

is now made to the following description taken in conjunction
with the accompanying drawings, in which:

FIG. 1 illustrates an example system operable to test an
application with functionality accessible through interaction
with a graphical user interface.

FIG. 2 illustrates an example method for testing an appli-
cation.

FIG. 3 illustrates an example flow chart for creating a test
case.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention and its advantages
are best understood by referring to FIGS. 1 through 3, like
numerals being used for like and corresponding parts of the
various drawings.

FIG. 1illustrates a system 10 operableto test an application
with functionality accessible through interaction with a
graphical user interface. System 10 includes an application
server 102 that comprises a remote application 110. A test
device 104 may be used to test functionality provided by
remote application 110 through objects provided in a graphi-
cal user interface 112. In addition to testing the functionality
of remote application 110, system 10 may also test the func-
tionality of the objects of graphical user interface 112 them-
selves (e.g., determining whether an object of graphical user
interface 112 is associated with an appropriate function of
remote application 110). In certain embodiments, test device
104 test device 104 may be used to testa local application 114
installed on test device 104. Test device 104 may retrieve
various test cases and/or test scripts stored in a test repository
106 to execute on remote application 110 and/or local appli-
cation 114. Data repository 108 may include data accessed
when test device 104 executes test cases. Test device 104 may
also store the results of the executed test cases in data reposi-
tory 108.

Certain embodiments of system 10 are operable to create
test cases for a version of application 110 and/or 114 when
those applications are not available for testing, such as prior to
the creation of new versions of the application 110 and/or
114. For example, system 10 may operate to detect and record
steps taken by a user of test device 104 on graphical user
interface 112 in order to create a test case for testing the
functionality of remote application 110 and/or local applica-
tion 114. The recorded steps may then be incorporated into an
automated test script that may be used to execute the test case
with various data inputs as provided by data repository 108.
After recording the user’s initial actions to create a test case,
however, subsequent versions of applications 110 and/or 114
may be created.

System 10 may allow creation and/or modification of a test
case with the expected characteristics of the objects to be
provided in new versions of application 110 and/or applica-
tion 114 through use of virtual objects that incorporate the
behavior of any new objects that will be included in the
subsequent versions of the application 110 and/or 114. As
such, a test case that relies on user interaction with controls on
graphical user interface 112 may be ready for execution on
application 110 and/or application 114 as soon as the new
versions of the applications become available and without
requiring a user of test device 104 to manually perform the
test steps through graphical user interface 112. Removing the
requirement of manually recording a user’s test steps once an
application becomes available may reduce the overall time
needed to prepare and execute any test cases and/or automa-
tion test scripts on newer versions of applications 110 and/or
114.



US 9,170,921 B2

3

A network 101 represents any suitable network that facili-
tates communication between the components of system 10.
For example, instructions invoked through controls on
graphical user interface 112 may be communicated from test
device 112 to application server 102 via network 101. Net-
work 101 may include any interconnecting system capable of
transmitting audio, video, signals, data, messages, or any
combination of the preceding. Network 101 may comprise all
ora portion of one or more of the following: a public switched
telephone network (PSTN), a public or private data network,
a local area network (LAN), a metropolitan area network
(MAN), a wide area network (WAN), a local, regional, or
global communication or computer network such as the Inter-
net, a wireline or wireless network, an enterprise intranet,
other suitable communication link, any other suitable com-
munication link, including combinations thereof operable to
facilitate communication between the components of system
10.

Application server 102 may include a network server, any
suitable remote server, a mainframe, a host computer, a work-
station, a web server, a personal computer, a file, server, or any
other suitable device operable to perform the functions of
remote application 110. In some embodiments, application
server 102 may execute any suitable operating system such as
IBM’s zSeries/Operating system (z/OS), MS-DOS,
PC-DOS, MAC-0OS, WINDOWS, UNIX, OPenVMS, Linux,
or any other appropriate operating systems, including oper-
ating systems developed in the future. The functions of appli-
cation server 102 may be performed by any suitable combi-
nation of one or more servers or other components at one or
more locations. In the embodiment where the modules are
servers, the servers may be public or private servers, and each
server may be a virtual or physical server. The server may
include one or more servers at the same or at locations remote
from one another.

In certain embodiments, application server 102 includes a
network interface 116, a processor 118, and a memory 120.

Network interface 116 represents any suitable device oper-
able to receive information from network 101, perform suit-
able processing of the information, communicate to other
devices, or any combination of the preceding. For example,
network interface 116 may receive a request to execute a
function associated with an object invoked on graphical user
interface 112. Network interface 116 represents any port or
connection, real or virtual, including any suitable hardware
and/or software, including protocol conversion and data pro-
cessing capabilities, to communicate through a LAN, WAN,
or other communication systems that allows application
server 102 to exchange information with the other compo-
nents of system 10.

Memory 120 stores, either permanently or temporarily,
data, operational software, or other information for processor
118. Memory 120 includes any one or a combination of
volatile or nonvolatile local or remote devices suitable for
storing information. For example, memory 120 may include
random access memory (RAM), read only memory (ROM),
magnetic storage devices, optical storage devices, or any
other suitable information storage device or a combination of
these devices. While illustrated as including particular mod-
ules, memory 120 may include any suitable information for
use in the operation of application server 102.

In certain embodiments, memory 120 includes remote
application 110 and management data 122. Remote applica-
tion 110 represents any suitable set of instructions, logic, or
code embodied in a non-transitory, computer readable
medium and operable to execute functions invoked through
interaction with objects on graphical user interface 112. By

20

25

30

35

40

45

50

4

way of example only, remote application 110 may be associ-
ated with a bank and be operable to access information asso-
ciated with accounts managed by the bank, transfer funds
among those accounts or with accounts at different organiza-
tions, invoke bill payment features, check the status of issue
tickets submitted by patrons of the bank, facilitate vendor
management related functions, carry out functions required
by government regulations, any other suitable function, and/
or any suitable combination of the preceding. When released
for use, remote application 110 may be used by employees of
an entity as well as customers, vendors, partners, and/or any
other suitable user, where appropriate. Particular embodi-
ments of system 10 facilitate testing of functionality associ-
ated with any objects in graphical user interface 112 used to
invoke operations in remote application 110 prior to release to
such users.

Remote application 110 may reference information stored
in management data 122. Management data 122 includes any
rules or data used by remote application 110 in carrying out its
functions. For example, management data 122 includes rules
that indicate what operation or combination of operations
corresponds to a particular action associated with an object on
graphical user interface 112. In certain embodiments, remote
application 110 may access rules or data residing in non-local
repositories, such as test repository 106, data repository 108,
and/or any other suitable repository instead of and/or in addi-
tion to information stored in management data 122.

Processor 118 communicatively couples to network inter-
face 116 and memory 120. Processor 118 controls the opera-
tion and administration of application server 102 by process-
ing information received from network interface 116 and
memory 120. Processor 118 includes any hardware and/or
software that operates to control and process information. For
example, processor 118 executes remote application 110 to
control the operation of application server 102. Processor 118
may be a programmable logic device, a microcontroller, a
microprocessor, any suitable processing device, or any suit-
able combination of the preceding.

Test device 104 may comprise any type of mobile or sta-
tionary computing device operable to allow a user to interact
with objects on graphical user interface 112. Examples of test
device 104 include a mobile phone, personal digital assistant,
laptop, netbook, ultrabook, tablet, desktop computer, cable
box, television, and/or any other suitable device. As will be
explained in more detail below, interaction with objects on
graphical user interface may invoke functionality in remote
application 110, local application 114, and/or test module
130, where appropriate. Certain embodiments of test device
104 comprise, along with graphical user interface 112, a
network interface 124, a processor 126, and a memory 128.

Graphical user interface or GUI 112 comprises objects that
invoke functionality within applications 110 and/or 114 in
response to actions taken on those objects by a user of test
device 104. Graphical user interface 112 is generally operable
to tailor and filter data entered by and presented to the user.
Graphical user interface 112 may provide the user with an
efficient and user-friendly presentation of information.
Objects within graphical user interface 112 may be arranged
to facilitate the display of information and possible choices
related to the underlying purpose of applications 110 and/or
114. For example, if graphical user interface 112 is associated
with a banking application, graphical user interface 112 may
operate to allow a user to select from among the accounts
owned by a bank patron in a “list” object. The user may then
click a submit “button” object on graphical user interface 112
to instruct application 110 and/or 114 to retrieve information
on the selected account. The retrieved information may be



US 9,170,921 B2

5

displayed to the user of test device 104 in a “label” or “text
field” object on graphical user interface 112. Other non-lim-
iting examples of objects that may be included on graphical
user interface 112 are a “check box,” “radio button,” “toggle
button,” “slider,” “combo box,” “password field,” “text area,”
and “table.” Non-limiting actions that may invoke function-
ality in applications 110 and/or 114 include clicking, tog-
gling, and hovering with any suitable input device, such as a
mouse, stylus, or finger.

Some objects within graphical user interface 112 may be
dynamic objects such that they appear in response to a trig-
gering condition. For example, a list object may be dynamic
if itappears only after a user has selected an appropriate check
box object. As another example, a dynamic list object may
include or display different items based on a particular selec-
tion of options on other objects.

Graphical user interface 112 may include multiple levels of
abstraction including groupings, containers, and boundaries,
each of which may be regarded as objects. It should be under-
stood that the term graphical user interface may be used in the
singular or in the plural to describe one or more graphical user
interfaces and each of the displays of a particular graphical
user interface 112.

For example, in certain embodiments of system 10, graphi-
cal user interface 112 comprises objects associated with test
module 130. Such objects may include a button that, when
clicked, starts/stops recording of actions taken on objects of
graphical user interface 112. The detected actions may
become a test case. When recording ceases, a set of automa-
tion scripts may be automatically created that will execute the
test case over multiple scenarios, such as with each of a set of
account numbers or other suitable one or more variables.
Graphical user interface 112 may also allow a user of test
device 104 or other suitable device to modity test cases by
rearranging the order of actions that will be taken on certain
objects. In particular embodiments, a user of test device 104
may create a virtual object, specify certain actions to be taken
with respect to the virtual object, and incorporate those
actions into a test case.

In particular embodiments, graphical user interface 112
may be displayed to a user using a web browser that allows a
user of test device 104 to interact with a website, hosted by
application server 102, for example, by transmitting informa-
tion to and receiving information from the website. Suitable
web browsers may include Microsoft Internet Explorer®,
Mozilla Firefox®, Google Chrome™, Apple Safari™, or
Opera®.

Portions of graphical user interface 112 that will be asso-
ciated with new versions of applications 110 and/or 114 may
be unavailable during test case creation. As such, test cases
may be created and/or updated through creation of virtual
objects as described in more detail below.

Network interface 124 represents any suitable device oper-
able to receive information from network 101, perform suit-
able processing of the information, communicate to other
devices, or any combination of the preceding. For example,
network interface 124 may communicate a request to execute
afunction associated with an object invoked on graphical user
interface 112 to application server 102. Network interface
124 represents any port or connection, real or virtual, includ-
ing any suitable hardware and/or software, including protocol
conversion and data processing capabilities, to communicate
through a LAN, WAN, or other communication systems that
allows test device 104 to exchange information with the other
components of system 10.

Memory 128 stores, either permanently or temporarily,
data, operational software, or other information for processor

29 < 29 <

40

45

65

6

126. Memory 128 includes any one or a combination of
volatile or nonvolatile local or remote devices suitable for
storing information. For example, memory 128 may include
random access memory (RAM), read only memory (ROM),
magnetic storage devices, optical storage devices, or any
other suitable information storage device or a combination of
these devices. While illustrated as including particular mod-
ules, memory 128 may include any suitable information for
use in the operation of test device 104.

Memory 128 may include any suitable software to carry
out the functions of test device 104. For example, test device
104 may include web browsing software and may incorporate
any suitable operating system such as WINDOWS, MAC-
OS, UNIX, LINUX, iOS, Windows Mobile, Android, and/or
any other suitable operating system. In certain embodiments,
memory 128 includes local application 114, management
data 134, test module 130, and test data 132.

Local application 114 represents any suitable set of
instructions, logic, or code embodied in a non-transitory,
computer readable medium and operable to execute functions
invoked through interaction with objects on graphical user
interface 112. Local application 114 may comprise any suit-
able application, such as any of those described above with
respect to remote application 110. When released for use,
local application 114 may be used by employees of an entity
as well as customers, vendors, partners, and/or any other
suitable user, where appropriate. Particular embodiments of
system 10 facilitate testing of functionality associated with
any objects in graphical user interface 112 used to invoke
operations in local application 114 prior to release to such
users.

Local application 114 may reference information stored in
management data 134. Management data 134 includes any
rules or data used by local application 114 in carrying out its
functions. For example, management data 134 includes rules
that indicate what operation or combination of operations
corresponds to a particular action associated with an object on
graphical user interface 112. In certain embodiments, local
application 114 may access rules or data residing in non-local
repositories, such as test repository 106, data repository 108,
and/or any other suitable repository instead of and/or in addi-
tion to information stored in management data 134.

Test module 130 represents any suitable set of instructions,
logic, or code embodied in a non-transitory, computer read-
able medium and operable to create, execute, and automate
testing of applications 110 and/or 114 through interaction
with objects of graphical user interface 112.

Test module 130 may reference information stored in test
data 132. Test data 132 includes any rules or data used by test
module 130 in carrying out its functions. For example, test
data 132 includes rules that indicate what operation or com-
bination of operations corresponds to a particular action asso-
ciated with an object on graphical user interface 112. In
certain embodiments, test module 130 may access rules or
data residing in non-local repositories, such as test repository
106, data repository 108, and/or any other suitable repository
instead of and/or in addition to information stored in test data
132.

Test module 130 may have any suitable features to carry
out its functions. For example, test module 130 may include
an exploration feature that allows creation of a test case by
detecting a user’s actions on one or more objects in graphical
user interface 112. During exploration, test module 130 may
also detect objects within graphical user interface 112 that are
not interacted with by a user of test device 104 as well as the
properties of such objects, such as the various options avail-
able within a list object. For example, dynamic objects may



US 9,170,921 B2

7

be detected during exploration in certain embodiments, along
with characteristics associated with those dynamic objects.
Test module 130 may keep a record of objects, including
dynamic objects, that have not been interacted with and/or
with options that have not been exercised. This may be pro-
vided in a notification to a user of test device 104.

Once explored, test module 130 may document the actions
detected in a user-friendly way, such that a user of test device
104, for example, may understand them if presented in a
window of graphical user interface 112 (e.g., “Click Transfer
Button”). Test module 130 also may facilitate insertion of test
checks at different points within a test. For example, a test
check may determine whether a value shown in a label object
after clicking a submit button object matches an expected
value. The test case may be stored in test data 132, test
repository 106, and/or any other suitable storage media, for
retrieval when the test case will be executed.

Test module 130 may include features for creating a test
case without using an exploration feature and/or when the
version of the application to be tested is unavailable. In cer-
tain embodiments, this may be carried out by modifying the
characteristics of an existing object detected during a previ-
ous exploration and/or modifying the actions taken on that
object in the test case. Additionally, test module 130 may be
used to a create a virtual object that emulates the expected
characteristics of an object of an application once it becomes
available. The test case may then incorporate actions associ-
ated with that virtual object as part of its test sequence. In
particular embodiments, test module 130 may create test
cases without or substantially without any exploration fea-
tures by using virtual objects. Test checks may be inserted
into the test case based on the modified existing objects and
the newly added virtual objects. As such, test module 130 may
create test cases based on exploration, modification of exist-
ing objects, modification of actions taken with existing objec-
tions, creation of virtual objects, addition of actions associ-
ated with virtual objects, and/or any suitable combination of
the preceding.

Test module 130 may include any suitable features for
managing and editing such test cases. For example, test mod-
ule 130 may allow reordering of the sequence of the actions in
atest case to any other suitable order. Additionally, actions on
objects may be added or removed. As another option, a group
of steps may be identified as a reusable component. A reus-
able component comprises one or more actions associated
with particular objects, which may include virtual objects.
Once identified, a reusable component may be used at mul-
tiple points within a test case and/or in other test cases.

Test module 130 may execute test cases piecemeal, which
will exercise objects in graphical user interface 112 in the
manner and order dictated by the steps of the test case. The
test checks will verify whether particular functions work
appropriately in application 110 and/or 114, when invoked
through graphical user interface 112. Test module 130 may be
configured to log the results of the test checks and/or any
errors/exceptions encountered during test case execution.
These results may be stored locally and/or in a non-local
repository such as data repository 108 for subsequent analysis
by a user of test device 104, for example.

Test module 130 may also create and execute automation
scripts based on the test cases. For example, an automation
scripts may be configured to execute a test case based on a
different scenarios, such as with each of a set of account
numbers that could be entered into a text field object of
graphical user interface 112. The input data sets, such as a set
of account numbers, may be retrieved from local storage in
memory 128 or retrieved from non-local repository, such as

10

15

20

25

30

35

40

45

50

55

60

65

8

data repository 108. The input data sets may also include
expected values for each of the test checks. As one non-
limiting example, the input data sets may be stored in tabular
format. Each row of the data set may correspond to a unique
iteration of the test case. The automation scripts may cause
the results of the test checks for each iteration of the test case
to be stored locally and/or in data repository 108. Addition-
ally, in certain embodiments, automation scripts may aggre-
gate and execute several unique test cases over one or more
applications 110 and/or 114.

In certain embodiments, test module 130 may facilitate
determining the amount of functional coverage that a particu-
lar set of test cases achieves for application 110 and/or 114.
This may involve analyzing the test cases and/or the automa-
tion scripts related to these test cases to determine the affected
objects and the actions associated with those objects. Test
module 130 may also analyze all or a portion of the objects
and possible properties for each of those objects in graphical
user interface 112 and/or application 110/114, which may be
detected during exploration, inserted based on expectations
of'a version of an application that is not available, and/or any
suitable combination of the preceding. Test module 130 may
then compare these two sets of information to determine how
much coverage one or more sets of test cases achieves over all
the functionality possible in application 110 and/or 114.

Processor 126 communicatively couples to network inter-
face 126 and memory 128. Processor 126 controls the opera-
tion and administration of test device 104 by processing infor-
mation received from network interface 126 and memory
128. Processor 126 includes any hardware and/or software
that operates to control and process information. For
example, processor 126 executes local application 114 and
any other software to control the operation of test device 104.
Processor 126 may be a programmable logic device, a micro-
controller, a microprocessor, any suitable processing device,
or any suitable combination of the preceding.

Test repository 106 and data repository 108 store, either
permanently or temporarily, data or other information for use
by any of the components of system 10. Test repository 106
and data repository 108 include any one or a combination of
volatile or nonvolatile local or remote devices suitable for
storing information. For example, test repository 106 and data
repository 108 may include random access memory (RAM),
read only memory (ROM), magnetic storage devices, optical
storage devices, or any other suitable information storage
device or a combination of these devices. While illustrated as
including particular modules, test repository 106 and data
repository 108 may include any suitable information for use
in the operation of system 10. For example, test repository
106 and data repository 108 may incorporate network inter-
faces similar to network interface 116 and/or 124, where
appropriate, to facilitate transfer of information over network
101. Test repository 106 and data repository 108 may incor-
porate processors similar to processor 118 and/or 126, where
appropriate, to facilitate storage and retrieval of information
stored on each respective storage medium.

In particular embodiments, test repository 106 includes
test cases 136 and automation scripts 138. Test module 130
may store and retrieve test cases 136, as needed throughout its
operation. Test cases 136 also may be referenced by automa-
tion scripts 138. Automation scripts 138 aggregate test cases
136 and include instructions for allowing test module 130 to
apply test cases 136 over one or more input data sets 140
stored in data repository 140. Input data set 140 may be
created, for example, by a user of test device 140. Alterna-
tively, test module 130 may create an input data set 140 by
analyzing information stored in separate database. For



US 9,170,921 B2

9

example, each row of an input data set may correspond to an
account identifier extracted from the separate database. Test
module 130 may store the results of executing test cases 136
and/or automation scripts 138 in results data 142.

In an exemplary embodiment of operation of system 10, an
initial version of a remote application 110 is available on
application server 102. Test module 130 initiates an explora-
tion feature that detects objects and actions related to those
objects within graphical user interface 112. Test module 130
stores the detected actions as test case 136. The next release of
remote application 110 will include a new object that did not
exist during the original exploration of remote application
110 through graphical user interface 112. Test module 130
facilitates incorporation of actions related to the new object
into the test case by creating a virtual object. For example, a
user of test device 104 provides characteristics (e.g., object
type, etc.) associated with the new object and one or more
actions related the new object. The user also adds test checks
associated with the new object. The virtual object and asso-
ciated actions are incorporated into a test case 136, such that
it includes actions provided using the exploration feature of
test module 130 along with actions entered directly related to
the virtual object. Test module 130 creates an automation
script 138 that references test case 136. Automation script 138
includes instructions for iterating test case 136 over an input
data set 140. The next release of remote application becomes
available on remote application 110. Test module 130
executes automation script 138 on remote application 110 via
graphical user interface 112. The results of the test are stored
in results data 142.

A component of system 10 may include an interface, logic,
memory, and/or other suitable element. An interface receives
input, sends output, processes the input and/or output, and/or
performs other suitable operations. An interface may com-
prise hardware and/or software. Logic performs the opera-
tions of the component. For example, logic executes instruc-
tions to generate output from input. Logic may include
hardware, software, and/or other logic. Logic may be
encoded in one or more non-transitory, tangible media, such
as a computer readable storage medium or any other suitable
tangible medium, and may perform operations when
executed by a computer. Certain logic, such as a processor,
may manage the operation of a component. Examples of a
processor include one or more computers, one or more micro-
processors, one or more applications, and/or other logic.

Modifications, additions, or omissions may be made to
system 10 without departing from the scope of the invention.
For example, test module 130 may facilitate creation of a test
case 136 through use of virtual objects alone without using
any exploration features. Test case 136 and/or automation
script 138 may be executed through graphical user interface
112 for testing under realistic conditions. As another
example, system 10 may incorporate two or more test devices
104. In such an embodiment, multiple devices 104 may be
used to execute portions of automation scripts 136 and/or to
create different portions of a test case as one or more reusable
components. In such embodiments, execution of automation
scripts 136 may be completed more quickly than with a single
test device 104.

Additionally, the components of system 10 may be inte-
grated or separated. For example, test repository 106 and data
repository 108 may be combined into a single repository. In
certain embodiments, all or a portion of repositories 106
and/or 108 may be incorporated directly into test device 104.

FIG. 2 illustrates an example method 200 for testing an
application. The method begins at step 202, where an appli-
cation is identified for testing. This may involve receiving

10

15

20

25

30

35

40

45

50

55

60

65

10

input from a user through a graphical user interface. At step
204, the method determines whether a test case will be cre-
ated. If so a test case is created at step 206. An example
embodiment of creating a test case will be described below
with respect to FIG. 3. If no test case is created at step 204, the
method determines whether a test case will be executed. If so,
the test case is executed at step 210. A test case may be
executed at step 210 outside of an automation script to debug
the test case, debug an application, and/or for any other suit-
able purpose. At step 212, an automation test script is created
based on one or more test cases. The automation test script
may include instructions for iterating the test case over one or
more input data sets. The automation test script may also
include instructions for reporting and/or storing the results of
test case execution. At step 216, the method determines func-
tional coverage for a test case and/or an automation test script.
This may be reported, for example, in terms of a percentage of
functionality tested in relation to the total amount of func-
tionality available in an application. At step 218, the method
determines whether any application changes are expected. If
s0, the method may return to step 204, where the method may
determine that another test case will be created. If not, the
method may end.

Modifications, additions, or omissions may be made to
method 200 disclosed herein without departing from the
scope of the invention. The method may include more, fewer,
or other steps. For example, at step 206, an existing test case
may be modified instead of and/or in addition to a new test
being created. In certain embodiments, an automation script
may not need to be generated at step 212. This may occur, for
example, when only one instance of a test case will be
executed at step 210. Additionally, an automation script may
already exist that points to an identifier for a test case. In such
a case, the underlying test case may be changed as needed
without requiring generation and/or changes to an automation
script at step 212. Additionally, steps may be performed in
parallel or in any suitable order. For example, the functional
coverage may be determined in step 216 prior to execution of
an automation script in step 214.

FIG. 3 illustrates an example method 300 for creating a test
case. The method begins at step 302, where the method deter-
mines whether to start from an existing test case. If so, the
method retrieves the existing test case at step 304. The exist-
ing test case may be retrieved from test repository 106, for
example. At step 306, the method determines whether the
version of the application to be tested is available. If the
version of the application to be tested is available, the method
determines whether any exploration of the application should
be performed at step 308. If so, the method detects an action
performed an object in a graphical user interface associated
with the application at step 310. At step 312, the method may
detect dynamic objects of the application. During this step,
objects that appear only in response to certain conditions may
be detected. The method also may detect an object and prop-
erties associated with such object that are not interacted with
or selected during exploration. The method determines
whether more steps and/or dynamic objects should be
detected at step 314. If so, the method returns to step 310. If
not, the method continues to step 316. Note that the method
may have continued to step 316 if the version of the applica-
tion to be tested was not available and/or if exploration of the
application was not to be performed.

At step 316, the method determines whether any virtual
objects will be created. If so, the method determines the
properties of the virtual object at step 318. This step may
involve receiving input from a user of test device 104, for
example. The virtual object is created in step 320. At step 322,



US 9,170,921 B2

11

the method incorporates the virtual object into the test case.
This may involve specifying actions to be taken on the virtual
object during test case and/or automation script execution.
This may also involve inserting test checks related to the
virtual object. The method determines whether any additional
virtual objects are to be created at step 316. [f not, the method
continues to step 324.

At step 324, the method determines whether an existing
object and/or actions taken on existing object will be modi-
fied. If so, existing object properties may be modified at step
326. The object may be incorporated into the test case at step
328. This may involve specifying actions to be taken on the
object during test case and/or automation script execution.
This may also involve inserting and/or modifying test checks
related to the object. The method determines whether any
additional modifications to additional existing objects and/or
actions on other existing object at step 324. If not, the method
continues to step 330 where reusable components may be
created. During step 330, sequences of actions and/or steps
related to one or more objects may be grouped together as a
unit. The method may insert reusable components at any
suitable number of points in the test case at step 332. At step
332, the method may also modify, create, and/or reorder any
steps in the test case, where appropriate. Then, the method
may end.

Modifications, additions, or omissions may be made to
method 300 disclosed herein without departing from the
scope of the invention. The method may include more, fewer,
or other steps. For example, certain embodiments of method
300 may exclude step 312, such that dynamic objects may be
not be detected during exploration unless such objects are
interacted with directly by a user. As another example,
method 300 may include an additional step whereby a user,
such as a user of test device 104, is provided a notification that
certain objects detected during exploration are dynamic
objects that may or may not have hidden options. The notifi-
cation may also indicate that certain objects have not been
interacted with during exploration. The notification, as one
non-limiting example, may be in the form of a graphical alert
on a graphical user interface that appears during and/or after
an application exploration. As another example, the notifica-
tion may appear in a log file.

Additionally, steps may be performed in parallel or in any
suitable order. For example, an existing test case may be
retrieved at step 304 and incorporated into a new test case
after the exploration steps 308-314.

Certain embodiments of the invention may provide one or
more technical advantages. A technical advantage of an
embodiment allows a test case to be created for an application
with functionality applied through a graphical user without
having the application available. The test case and/or auto-
mation scripts based on the test case may be ready for execu-
tion as soon as the application becomes available for testing.
This may reduce the time allocated for testing of an applica-
tion and, accordingly, the overall time required to release an
application to general users. Another advantage of an
embodiment allows a user who may have a non-technical
background to create a test case and/or associated automation
scripts that cover multiple testing scenarios easily through a
graphical user interface. Such test cases and/or automation
scripts may not require the user to author any computer code.
Another technical advantage of an embodiment detects
actions associated with a test case, automatically documents
those test cases, and presents them on a user-friendly graphi-
cal user interface for relatively easy modification. Another
technical advantage of an embodiment accommodates

10

15

20

25

30

35

40

45

50

55

65

12

changes in underlying software applications without requir-
ing substantial changes in the testing environment.
Although the present invention has been described with
several embodiments, a myriad of changes, variations, alter-
ations, transformations, and modifications may be suggested
to one skilled in the art, and it is intended that the present
invention encompass such changes, variations, alterations,
transformations, and modifications as fall within the scope of
the appended claims.
What is claimed is:
1. A device for testing an application, comprising:
a memory comprising rules for testing an application with
functionality applied through a graphical user interface;
and
a processor communicatively coupled to the memory and
operable to:
identify the application with functionality applied
through the graphical user interface;

determine expected characteristics of an application
object that will be included in a version of the appli-
cation once the version of the application becomes
available for testing through the graphical user inter-
face;

create a virtual object according to the expected charac-
teristics of the application object;

incorporate the virtual object and a step associated with
the virtual object into a test case to be used on the
version of the application; and

execute the test case that includes the virtual object and
the step associated with the virtual object on the ver-
sion of the application when the version of the appli-
cation becomes available for testing through the
graphical user interface.

2. The device of claim 1, wherein the processor is further
operable to:

execute a prior version of the application that is available
for testing through the graphical user interface;

detect a step taken within a graphical user interface asso-
ciated with the prior version of the application; and

incorporate the detected step into the test case such that the
test case includes the detected step and the step associ-
ated with the virtual object.

3. The device of claim 1, wherein the processor is further
operable to generate an automation test script that includes
the test case with the virtual object prior to when the version
of the application becomes available for testing through the
graphical user interface.

4. The device of claim 1, wherein the processor is further
operable to:

execute a different version of the application that is avail-
able for testing through the graphical user interface; and

during execution of the different version of the application,
identify a dynamic object within the application without
detecting an interactive action taken on the dynamic
object.

5. The method of claim 1, wherein the processor is further

operable to:

identify an existing object in the test case distinct from the
virtual object;

modify the existing object according to expected charac-
teristics of an additional application object; and

incorporate the modified object into the test case without
executing the application, such that the test case includes
the existing object and the virtual object.

6. The device of claim 1, wherein the processor is further

operable to determine a value for functional coverage asso-
ciated with the test case.



US 9,170,921 B2

13

7. The device of claim 1, wherein the processor is further
operable to designate one or more steps in the test case as a
reusable component.

8. A method for testing an application comprising:

identifying an application with functionality applied

through a graphical user interface;
determining expected characteristics of an application
object that will be included in a version of the applica-
tion once the version of the application becomes avail-
able for testing through the graphical user interface;

creating, using a processor, a virtual object according to the
expected characteristics of the application object;

incorporating, using the processor, and the virtual object
and a step associated with the virtual object into a test
case to be used on the version of the application; and

executing, using the processor, the test case that includes
and the step associated with the virtual object the virtual
object on the version of the application when the version
of'the application becomes available for testing through
the graphical user interface.

9. The method of claim 8, further comprising:

executing a prior version of the application that is available

for testing through the graphical user interface;
detecting a step taken within a graphical user interface
associated with the prior version of the application; and
incorporating the detected step into the test case such that
the test case includes the detected step and the step
associated with the virtual object.
10. The method of claim 8, further comprising generating
an automation test script that includes the test case with the
virtual object prior to when the version of the application
becomes available for testing through the graphical user inter-
face.
11. The method of claim 8, further comprising:
executing a different version of the application that is avail-
able for testing through the graphical user interface; and

during execution of the different version ofthe application,
identifying a dynamic object within the application
without detecting an interactive action taken on the
dynamic object.

12. The method of claim 8, further comprising:

identifying an existing object in the test case distinct from

the virtual object;
modifying the existing object according to expected char-
acteristics of an additional application object; and

incorporating the modified object into the test case without
executing the application, such that the test case includes
the existing object and the virtual object.

13. The method of claim 8, further comprising determining
a value for functional coverage associated with the test case.

14. The method of claim 8, further comprising designating
one or more steps in the test case as a reusable component.

5

14

15. A non-transitory computer readable medium compris-

ing logic, the logic when executed by a processor, operable to:

identify an application with functionality applied through a
graphical user interface;

determine expected characteristics of an application object

that will be included in a version of the application once
the version of the application becomes available for
testing through the graphical user interface;

create a virtual object according to the expected character-

istics of the application object;

incorporate the virtual object and a step associated with the

virtual object into a test case to be used on the version of
the application; and

execute the test case that includes and the step associated

with the virtual object the virtual object on the version of
the application when the version of the application
becomes available for testing through the graphical user
interface.

16. The non-transitory computer readable medium of claim
15, wherein the logic is further operable to:

execute a prior version of the application that is available

for testing through the graphical user interface;
detect a step taken within a graphical user interface asso-
ciated with the prior version of the application; and

incorporate the detected step into the test case such that the
test case includes the detected step and the step associ-
ated with the virtual object.
17. The non-transitory computer readable medium of claim
15, wherein the logic is further operable to generate an auto-
mation test script that includes the test case with the virtual
object prior to when the version of the application becomes
available for testing through the graphical user interface.
18. The non-transitory computer readable medium of claim
15, wherein the logic is further operable to:
execute a different version of the application that is avail-
able for testing through the graphical user interface; and

during execution of the different version of the application,
identify a dynamic object within the application without
detecting an interactive action taken on the dynamic
object.

19. The non-transitory computer readable medium of claim
15, wherein the logic is further operable to:

identify an existing object in the test case distinct from the

virtual object;
modify the existing object according to expected charac-
teristics of an additional application object; and

incorporate the modified object into the test case without
executing the application, such that the test case includes
the existing object and the virtual object.

20. The non-transitory computer readable medium of claim
15, wherein the logic is further operable to designate one or
more steps in the test case as a reusable component.

#* #* #* #* #*



